\qquad
Target 7-1: I can describe transformations, domain and range, and graph exponential and logarithmic functions.

1. $y=-4\left(\frac{1}{2}\right)^{x+2}$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
3. $y=2\left(\frac{1}{5}\right)^{x}-1$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
5. $y=3 \log _{2} x+1$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
7. $y=\frac{1}{2} \log _{8}(x+1)-2$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
2. $y=\frac{1}{5}(2)^{x-1}$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
4. $y=\frac{1}{2}(3)^{x+4}-5$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
6. $y=2 \log _{\frac{1}{4}}(x-3)+2$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad
8. $y=-2 \log _{2}(x-4)+3$

Parent function: \qquad
$a=$ meaning \qquad
$h=$ meaning \qquad
$k=$ meaning \qquad
Domain: \qquad
Range: \qquad

Graphs for T7-1

T7-2 RETAKE WS
 Solving \& Writing Exponential Equations

Solve each equation.

1. $25^{x+5}=125^{x-3}$
2. $\left(\frac{1}{27}\right)^{\frac{1}{3} x-5}=9^{x-3}$
3. $11^{x-4}=121^{x+28}$
4. $\left(\frac{1}{6}\right)^{2 x+2}=216^{x-1}$
5. $\left(\frac{1}{2}\right)^{x-3}=16^{3 x+1}$
6. $3^{6 x-2}=\left(\frac{1}{9}\right)^{x+1}$

Write an exponential function in the form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{x}}$ for the graph that passes through the given points.
7. $(0,5)$ and $(4,3125)$
8. $(0,8)$ and $(4,2048)$
9. $\left(0, \frac{3}{4}\right)$ and (2 ,
36.75)
10. $(0,-0.2)$ and $(-3,-3.125)$
11. $(0,15)$ and $\left(2, \frac{15}{16}\right)$
12. $(0,0.7)$ and $\left(\frac{1}{2}, 3.5\right)$

Solve each equation.
13. $20 \cdot 400=\left(\frac{1}{20}\right)^{7 x+11}$
14. $10^{4 x+8}=1000^{x}$
15. $\left(\frac{1}{16}\right)^{3 x-4}=64^{x-1}$
16. $\left(\frac{1}{8}\right)^{x-6}=4^{4 x+5}$
17. $\left(\frac{1}{36}\right)^{x+8}=6^{x} \cdot 216^{x-3}$
18. $128^{x+3}=\left(\frac{1}{1024}\right)^{2 x}$
19. At time t, there are 216^{t+18} bacteria of type A and $36^{2 t+8}$ bacteria of type B organisms in a sample. When will the number of each type of bacteria be equal?

T7-3 RETAKE WS
 Solving Logarithmic Equations

Side 1 - w/o properties

Solve each equation.

1. $3 x=\log _{6} 216$
2. $x-4=\log _{3} 243$
3. $\log _{4}(4 x-20)=5$
4. $\log _{9}(3-x)=\log _{9}(5 x-15)$
5. $\log _{81}(x+20)=\log _{81}(6 x)$
6. $\log _{9}\left(3 x^{2}\right)=\log _{9}(2 x+1)$
7. $\log _{4}(x-1)=\log _{4}(12)$
8. $\log _{7}(5-x)=\log _{7}(5)$
9. $\log _{x}(5 x)=2$

Solve each equation.
10. $\log _{5}(-3 x)=1$
11. $\log _{6} x=\log _{6}(4-x)$
12. $\log _{10}(x-3)=2$
13. $\log _{2}(x-5)=\log _{2}(3)$
14. $\log _{7}(8 x+5)=\log _{7}(6 x-18)$
15. $\log _{9}(3 x-3)=1.5$
16. $\log _{10}(2 x-2)=\log _{10}(7-x)$
17. $\log _{9}(x-1)=\log _{9}(2 x)$
18. $\log _{16} x \geq 0.5$
19. $\log _{3}\left(\frac{x-3}{4}+5\right)>\log _{3}(x+2)$
20. $\log _{5}(3 x)=\log _{5}(2 x-1)$
21. $\log _{3}(7-x)=\log _{3}(x+19)$

T7-3 RETAKE WS

Solving Logarithmic Equations
Solve each equation. Check your solutions.

1. $\log _{7} n=\frac{2}{3} \log _{7} 8$
2. $\log _{6} x+\log _{6} 5=\log _{6} 45$
3. $\log _{9}(3 u+14)-\log _{9} 5=\log _{9} 2 u$
4. $\log _{3} y=-\log _{3} 16+\frac{1}{3} \log _{3} 64$
5. $\log _{2} d=5 \log _{2} 2-\log _{2} 8$
6. $\log _{10}(3 m-5)+\log _{10} m=\log _{10} 2$
7. $\log _{8}(t+10)-\log _{8}(t-1)=\log _{8} 12$
8. $\log _{3}(a+3)+\log _{3}(a+2)=\log _{3} 6$
9. $\log _{10}(r+4)-\log _{10} r=\log _{10}(r+1)$
10. $\log _{4}\left(x^{2}-4\right)-\log _{4}(x+2)=\log _{4} 1$
11. $\log _{10} 4+\log _{10} w=2$
12. $3 \log _{5}\left(x^{2}+9\right)-6=0$
13. $\log _{16}(9 x+5)-\log _{16}\left(x^{2}-1\right)=\frac{1}{2}$
14. $\log _{6}(2 x-5)+1=\log _{6}(7 x+10)$
15. $\log _{2}(5 y+2)-1=\log _{2}(1-2 y)$
\qquad
16. Ten grams of Carbon 14 is stored in a container. The amount C (in grams) of Carbon 14 present after t years can be modeled by $C=10(0.99987)^{t}$. How much is present after 1000 years?
17. You deposit $\$ 2000$ in an account that earns 5% annual interest. Write a function for each of the following frequencies. Then determine the balance after 2 years if the interest is compounded with the given frequency.
a. annually
b. quarterly
c. monthly
Function:
Function:
Function:
Balance:
Balance:
Balance:
18. A customer purchases a television for $\$ 800$ using a credit card. The interest is charged on an unpaid balance at a rate of 18% per year compounded monthly. If the customer makes no payment for one year, how much is owed at the end of the year?
19. A diamond ring was purchased twenty years ago for $\$ 500$. The value of the ring increases by 8% each year. What is the value of the ring today?
20. In 1990 the tuition at a private college was $\$ 15000$. During the next 9 years, tuition increased by about 7.2% each year.
a. Write a model giving the cost C of tuition at the college t years after 1990
b. About what year will the tuition be $\$ 20,000$?
c. If this trend continues what will the tuition be in 2010
21. The number of newly reported cases of tuberculosis in the US in 1991 was 28,500 . In 1996 it went down to 22,841 . The decrease in cases models exponential decay. Write a function to model this situation where t represents the number of years since 1991.
a. Identify the initial amount, decay factor and annual percent decrease.
b. In what year was the number of newly reported cases in US approximately 25,000 ?
c. When will the number of newly reported cases be about 16,000 ?
d. Estimate the number of newly reported cases in 2005.
22. A tool \& die business purchased a piece of equipment of $\$ 250,000$. The value of the equipment depreciates at a rate of 12% each year.
a. Write an exponential decay model for the value of equipment.
b. What is the value of equipment after 5 years?
c. Approximately when the equipment will have a value of $\$ 70,000$?
23. A house was purchased for $\$ 90,000$ in 1995. If the value of the home increases 5% per year, what is it worth in the year 2020?

Function: \qquad Worth in 2020: \qquad
9. You deposit $\$ 1000$ in an account that earns 2.5% annual interest. Find the balance after 3 years if the interest compounds with the given frequency.
a. monthly

Function:
Balance:
b. daily

Function:
Balance:

