Study Guide and Intervention 7-4

Solving Logarithmic Equations and Inequalities

Solving Logarithmic Equations

Property of Equality for If *b* is a positive number other than 1, **Logarithmic Functions** then $\log_b x = \log_b y$ if and only if x = y.

Example 1	Solve $\log_2 2x = 3$.	Example 2 Solve the equation
$\log_2 2x = 3$	Original equation	$\log_2(x+17) = \log_2(3x+23).$
$2x = 2^3$	Definition of logarithm	Since the bases of the logarithms are equal, $(x + 17)$ must equal $(3x + 23)$.
2x = 8	Simplify.	(r + 17) = (3r + 23)
x = 4	Simplify.	-6 = 2x
The solution is $x = 4$.		x = -3

Exercises

Solve each equation.

1. $\log_2 32 = 3x$
5
3
3. $\log_{2x} 16 = -2$
<u> </u> <u>8</u>
5. $\log_4 (5x + 1) = 2$
3
7. $\log_4 (3x - 1) = \log_4 (2x + 3)$
4
9. $\log_x + \frac{1}{4} 27 = 3$
–1
11. $\log_x 1000 = 3$
10
13. $\log_2 x = \log_2 12$
x = 12
15. $\log_{10} x = \log_{10} (5x - 20)$
x = 5
17. $\log_4(x+12) = \log_4 4x$
x = 4

2. $\log_3 2c = -2$ <u>1</u> 18 **4.** $\log_{25}\left(\frac{x}{2}\right) = \frac{1}{2}$ 10 6. $\log_8 (x-5) = \frac{2}{3}$ 9 8. $\log_2 (x^2 - 6) = \log_2 (2x + 2)$ 4 **10.** $\log_2 (x + 3) = 4$ 13 12. $\log_8 (4x + 4) = 2$ 15 14. $\log_3(x-5) = \log_3 13$ x = 18 **16.** $\log_5 x = \log_5 (2x - 1)$ x = 1 18. $\log_6(x-3) = \log_6 2x$ no solution