T5-3 RETAKE WKST

Name:	

Date: _____ Period: _____

Circle whether the function is even or odd. Then describe end behavior of the graph of the polynomial function.

1. $f(x) = -6x^3 + 8x$	2. $f(x) = 7x^4 - x^3 + 7x + 1$
Symmetry: even, odd	Symmetry: even, odd
End Behavior:	End Behavior:
$As \ x \to \infty, y \to $	$As \ x \to \infty, y \to $
$As \ x \to -\infty, y \to $	$As \ x \to -\infty, y \to $
3. $f(x) = 5x^3 - 5x^2 - 7x - 3$	4. $f(x) = x^5 - 6x^7 - 4x$
Symmetry: even, odd	Symmetry: even, odd
End Behavior:	End Behavior:
5. $f(x) = 2x^2 - 1$	6. $f(x) = -11x^4 - 7x^2$
Symmetry: even, odd	Symmetry: even, odd
End Behavior:	End Behavior:
7. $f(x) = 4x^3 - 5x$	8. $f(x) = -5x^4 - 2$
Symmetry: even, odd	Symmetry: even, odd
End Behavior:	End Behavior:

Use what you know about end behavior to match the polynomial function with its graph.

Use the following functions for problems 13-18.

 $f(x) = -x^{2} + 3x - 7$ g(x) = 9x - 5 $h(x) = \sqrt{-4x + 32}$ 13. Find f(-5)14. Find f(a + 2)15. Find g(a + 2)16. Find h(4)17. Find $-2 \cdot f(a + 2) - 3 \cdot g(a + 2)$ 18. Find $f(3m^{2})$

T5-4 Retake Problems Analyzing Graphs of Polynomials

Using a calculator sketch the following functions. Determine and label LIST all x-intercepts, y-intercepts, and local and relative maximums and minimums.

- 1. $f(x) = 2x^4 5x^3 2x^2 + 4$
- 2. $f(x) = -2x^4 + 4x^3 + 2x^2 + x 3$
- 3. $f(x) = 3x^4 4x^3 2x^2 + x 4$

- 4. $f(x) = -4x^4 + 5x^3 + 2x^2 + 3x + 1$ 5. $f(x) = x^3 + x^2 - 6x - 3$
- 6. $f(x) = 3x^3 6x^2 2x + 2$

Sketch the graph of polynomial functions with the following characteristics.

- 7. An even function with zeros at -5, -3, 0, 2 and 4.
- 8. An odd function with zeros at -2, 1, 3 and 5.
- 9. A 4th-degree function with a zero at -5, maximum at x = 2, and minimum at x = -1.
- 10. A 5th-degree function with zeros at -5, 0, and 4, maximum at x = -2.
- 11. An odd function with zeros at -1, 2 and 5 and a positive leading coefficient.

12. An even function with a minimum at x = 3 and a negative leading coefficient.

For the following estimate the every zero, y-intercept, local and relative minimums and minimums and determine the smallest possible degree of the function.

T5-5 Graphing Polynomials RETAKE WS

Name:_		
Per:	Date:	

Identify the zeroes and y-intercept for each graph and then write the equation in factored form.

For #6-11, identify the zeroes and y-intercept for each equation. Then sketch the graph of each function.

6.
$$f(x) = x^2(x-1)(x+2)(x+4)$$

7.
$$f(x) = -x(x + 3)(x + 2)(x - 1)^2$$

9.
$$f(x) = 4(x - 3)(x - 3)(x + 6)$$

11.
$$f(x) = 2(x + 2)^2(x - 5)$$

