TOWING SERVICE

Verbal Description

When a tow truck is called, the cost of the service is \$10 plus \$1 per mile that the car must be towed.

Slope:
$$\frac{\$1}{1 \, Mile}$$

Y-intercept: 0 Miles Towed \$10 Charged

Define your Variables

Independent:

Dependent:

$$y = mx + b$$

Table of Values

X	Y

Points to Graph:

$$(\quad ,\quad)\;(\quad ,\quad)$$

Graph

T-SHIRT SHOP

Verbal Description

Your new job is at the Custom T Shop, where T-shirts are printed to order. For each order, Custom T Shop charges \$8.00 per shirt plus a onetime set up fee of \$15.00

Find the following and explain what they mean.

Slope:

Y-intercept:

X-intercept:

Define your Variables

Independent: Number of T-Shirts

Dependent: Total Cost for Customers

Write an Equation:

$$y = mx + b$$

$$y = 8x + 15$$

Table of Values

X	Y

Points to Graph:

Graph

PLUMBER

Verbal Description

When a plumber is called, the cost of the service call is \$50 for him to show up at your house, plus an additional \$25 per hour.

Find the following and explain what they mean.

Slope:

Y-intercept:

X-intercept:

Define your Variables

Independent:

Dependent:

Equation:

$$y = mx + b$$

Table of Values

Hours	Total Price
Worked	
X	Y
0	50
1	75
2	100
3	125

Points to Graph:

(,) (,)

(,)(,)

Graph

CELL PHONE CHARGES

Verbal Description

Your cell phone company charges \$20 a month plus \$0.50 per text message.

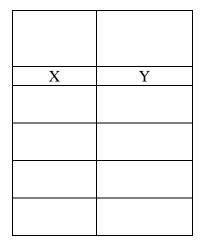
Find the following and explain what they mean.

Slope:

Y-intercept:

X-intercept:

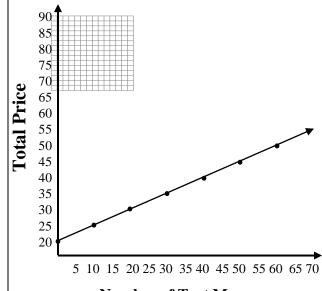
Define your Variables


Independent:

Dependent:

Write an Equation:

$$y = mx + b$$


Table of Values

Points to Graph:

(,)(,)

Graph

Number of Text Messages

POPULATION

Verbal Description

Suppose a town has a population of 5,000 residents but that the population is decreasing by 200 people each year.

Slope:
$$\frac{-200 People}{1 year}$$

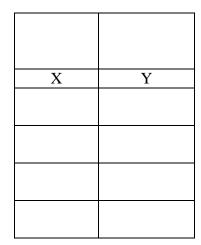
Y-intercept: 0 Years

5,000 People

X-intercept: 25 Years

0 People

Define your Variables


Independent:

Dependent:

Write an Equation:

$$y = mx + b$$

Table of Values

Points to Graph:

Graph

CARICATURES AT THE FAIR

Verbal Description

At a fair, Bob draws caricatures. He pays the fair \$30 for space to set up a table and \$2 for each drawing he sells.

Find the following and explain what they mean.

Slope:

Y-intercept:

X-intercept:

Define your Variables

Independent: Drawings Sold

Dependent: Total Price for Customer

Write an Equation:

$$y = mx + b$$

$$y = 2x - 30$$

Table of Values

X	Y
Λ	Ĭ

Points to Graph:

(,) (,)

(,)(,)

Graph

CAR VALUE

Verbal Description

The average value of a certain type of automobile was \$14,220 in 1993 and depreciated by \$2,220 every 2 years.

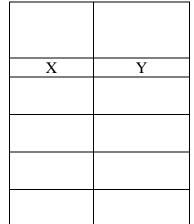
Find the following and explain what they mean.

Slope:

Y-intercept:

X-intercept:

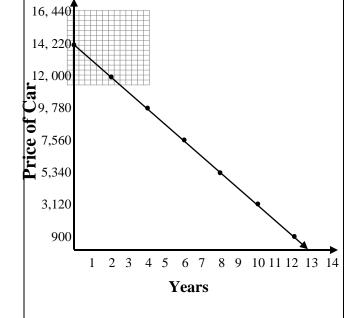
Define your Variables


Independent:

Dependent:

Write an Equation:

$$y = mx + b$$


Table of Values

Points to Graph:

(,)(,)

Graph

RENTAL CAR

Verbal Description

The rental rate at Rent a Wreck is \$30 per day plus \$0.25 per mile driven.

Find the following and explain what they mean.

Slope:

Y-intercept:

X-intercept:

Define your Variables

Independent:

Dependent:

Write an Equation:

$$y = mx + b$$

Table of Values

Miles	Total Price
Driven	
X	Y
0	30
4	31
8	32
12	33

Points to Graph:

(,) (,)

(,)(,)

Graph

Equation

Define your variables:

y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values

X	Y

Graph

Equation

Define your variables:

y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values

X	Y

Graph

Equation

Define your variables:

y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values

X	Y

Graph

Equation

Define your variables:

y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values

X	Y

Graph

Equation

Define your variables:

y =

 $\mathbf{x} =$

Write your equation:

y =

Table of Values

X	Y

Graph

Name	Date
	2