Name/Per:_

Algebra 2 Final Review 2014 – Semester 1

** You will be able to have <u>ONE</u> 4x6 note card (Front and Back) on your final!**

- Prioritize your studies by focusing on targets you scored low on 1st there is a place to note old scores
- Each target is given at least one problem in this packet
- Review problems are listed next to each target You will need your book
- Answer keys will be available in the classroom and online at <u>www.mahonymath.weebly.com</u>
- Small mini lessons will be scheduled each class sign up for the ones you want to participate in
- After school help is available T/W/Th 2:45-4
- SENIORS TEST ON YOUR LAST DAY (or schedule it before) June 3rd or 4th if you don't make arrangements.

Score	Chapter 4	Practice
	T 4-1: I can find and interpret maximum and minimum values by	Page 224 #13-21 odd, 23-31
	graphing a quadratic.	odd, 32, 60, 61
	T 4-2: I can determine how many solutions a function has and find	Page 233 #1-3, 4, 5, 8, 13,
	the value of those solutions/roots/zeros by graphing a quadratic	20, 21
	T 4-3: I can find the roots/solutions/zeros by factoring a quadratic.	Pg 242 #17-19, 35-43, 47,
		48
	T 4-4: I can perform algebraic operations to complex numbers.	Pg 250 18-23,26-4, 48-
		60,66,67
	T 4-6: I can find the roots/solutions/zeros using the quadratic formula	Pg 269 # 1-13, 35-40
	for a quadratic.	

1. $f(x) = 2x^2 - 4x - 6$

y-intercept:_____

AOS:_____

Vertex:_____

Max/Min:_____

Solution(s):_____ Verify your solutions

2. Solve by factoring $4x^2 + 17x - 15 = 0$

3. Solve using the Quadratic Formula $5x^2 + 2x + 4 = 0$

Discriminant: _____

Solution(s):_____

4. (-6-i)(3-3i)

	Name/Per:		
Score	Transformations Chapter	Practice	
	T-T-3: I can transform linear, quadratic, square root, and absolute	TU-3 Retake Worksheet	
	value equations and explain the motion.		
	T-T-4: I can graph linear, quadratic, square root, and absolute value	TU-4 Retake Worksheet	
	equations that have been transformed.		
	T-T-5: I can write the equation of linear, quadratic, square root, and	TU-5 Retake Worksheet	
	absolute value graphs.		

1. How does the graph of $y = \left(\frac{x+5}{4}\right)^2 - 3$ compare with the graph of $y = x^2$?

What is the new domain and range?

2. Graph the following.
$$y+1 = -\frac{x+6}{3}$$

y = _____

y =_

Name/Per:		
Score	Chapter 5	Practice
	T 5-1: I can perform operations on polynomials expressions.	Pg 307 #17-23 odd, 29-
		39odd, 41-49odd, 54,55
	T 5-3: I can evaluate polynomial expressions, explaining the end	Pg. 326 #5-12all 35-40all
	behavior and state the number of real zeros.	
	T 5-4: I can locate the zeros, relative maxima and minima of a	Pg. 334 #23-26all 27-32all
	polynomial on a graphing calculator. I can use this information to	
	sketch a graph.	
	T 5-5: I can identify zeros and intercepts from a graph or an equation	T5-5 Retake Worksheet
	and use this information to write an equation or graph a polynomial.	

1. Simplify. (No negative exponents). $\left(\frac{4x^{-2}y^{3}}{xy^{-4}}\right)^{-2}$

2. Find $p(4y-3)if p(x) = 2x^2 - 4x + 3$

3. A. Describe the end behavior.

- B. Determine whether it represents an odd degree or an even degree polynomial.
- C. State the number of real zeros

4. On a graphing calculator determine, real zeros, local and relative maxima and minima of the polynomial and sketch the graph and label all parts. $f(x) = 3x^3 - 6x^2 - 2x + 2$

5. Graph the polynomial and determine the following:

$$y = -x(x+6)(x-8)(x+1)(x+9)$$

Zeroes: _

	Name/H	Name/Per:		
Score	Chapter 8	Practice		
	T 8-1: I can simplify rational expressions with multiplication and	8.1 Pg. 534 #13-18all, 25-		
	division.	35all		
	T 8-2: I can simplify rational expressions with addition and	8.2 Pg. 541 #1-13all, 45,51		
	subtraction.			
	T 8-3: I can solve rational expressions.			
		8.6 Pg. 576 #1-8all, 34,35		
1. $\frac{10x^2}{4x^2}$	$\frac{50x}{-9} \cdot \frac{2x+3}{4x^2-20x} \qquad \qquad 2. \ \frac{15x^2y}{42x^2y} - \frac{5xy^3}{6xy^2}$			

3.
$$\frac{4}{x^2 - 8x + 12} = \frac{x}{x - 2} + \frac{1}{x - 6}$$

Score	Chapter 6	Practice
	T 6-1: I can perform composition of functions.	6.1 Pg. 389 #1-6all
	T 6-2: I can find inverse functions and determine whether it is a	6.2 Pg. 396 #15-32all
	function or a relation.	-
1 I	Les the functions found a to find the following:	

1. Use the functions f and g to find the following:

$$f(x) = x^2 + 3x - 5$$
 $g(x) = 2x + 1$

$$(f+g)(x) (f\cdot g)(x)$$

$$(f \circ g)(x) \qquad \qquad (g \circ f)(x)$$

2. For these problems find the inverse and (use the horizontal line test to) *determine if the inverse is a function or a relation*.

$$f(x) = \frac{\sqrt{5x+8}}{3}$$
$$f^{-1}(x) =$$

Name/Per:_____ TU-3: I can transform equations and explain the motion.

For the following problems: **All of this should be done without graphing**

- Describe the transformation that is happening.
- Determine the domain and range.

1. $y = (x - 5)^2$		$2. y = 4 + \sqrt{x - 7}$
Domain:		Domain:
Range:		Range:
3. $y - 5 = (x + 1)^2$		4. $y = -3(x+4)^2 + 6$
Domain:		Domain:
Range:		Range:
5. $\frac{y}{2} = \left \frac{x}{4}\right + 2$		6. $\frac{y+1}{-3} = \sqrt{x+2}$
Domain:		Domain:
Range:		Range:
 Describe the transform Write an equation for Determine the domai 1. y = √x shifted down 	mation that is happening the transformations. n and range. 5 units and vertically s	g. tretched by 2.
Equation:	Domain:	Range:
2. $y = x^2$ Shifted to the	right 3 units, up 4 units	s and is reflected of the x-axis.
Equation:	Domain:	Range:
3. $y = x $ Stretched hor	rizontally by 3 and verti	ically by 7. Then shifted to the left 5 and up 12.
Equation:	Domain:	Range:
4. $y = x^2$ Vertically structure	etched by $\frac{2}{3}$, shifted right	nt 10, down 3 units and then reflected over the y
Equation:	Domain:	Range:

Name/Per:_____

TU-4 Retake Problems	
Graph the groups of functions on the following graphs. Determine the domain and range for each function.	

Quadratic Parent Function $y = x$	² Domain: All real numbers Range: $y \ge 0$
1. $y = (x - 2)^2$	2. $y - 3 = (x + 1)^2$
$3. y = 2x^2 - 4$	4. $\frac{y}{-3} = (x-1)^2 - 6$
5. $y = \frac{1}{2}(-x+7)^2 + 3$	$6. -y = \left(-\frac{x+2}{2}\right)^2 + 5$

Square Root Parent Function	$y = \sqrt{x}$	Domain: $x \ge 0$	Range: $y \ge 0$
1. $y = \sqrt{x} + 3$		2. $y = \sqrt{\frac{x-1}{3}} + 1$	
3. $y = \sqrt{-x+2}$		4. $-y = \frac{1}{2}\sqrt{-x+3} - 2$	
5. $y = -2\sqrt{x+5} + 2$		$6. y^2 = x - 2$	

Absolute Value Parent Function	y = x	Domain: All Real Numbers	Range: $y \ge 0$
1. $y = x + 4 $		2. $y + 4 = x - 5 $	
3. $y = 2 x - 1 + 2$		4. $\frac{y}{3} = - x + 1$	
5. $y = -4 x+7 + 10$		6. $y - 1 = -\left \frac{x+2}{3}\right $	

Name/Per:__

TU-5 I can write the equation of linear, quadratic, square root, and absolute value graphs.

Write an equation for the following graphs. Determine their parent function and the domain and range.

T5-5 Graphing Polynomials

Identify the zeroes and y-intercept for each graph and then write the equation in factored form. 1.

Name/Per:___

For #6-11, identify the zeroes and y-intercept for each equation. Then sketch the graph of each function. 6. $f(x) = x^2(x-1)(x+2)(x+4)$ 7. $f(x) = -x(x+3)(x+2)(x-1)^2$

8.
$$f(x) = -3(x + 5)^2(x + 3)$$

10.
$$f(x) = -2(x - 1)(x + 2)(x + 5)(x - 3)$$

9.
$$f(x) = 4(x - 3)(x - 3)(x + 6)$$

11.
$$f(x) = 2(x + 2)^2(x - 5)$$

