Name:		Per:
	Ch 6 REVIEW	

The bolded questions are a priority and should be attempted first. Use separate paper to show work and write your answers on this ART.

The following is a list of the bolded questions.

T6-4: 2, 5, 7, 8, 14, 16, 19, 22, 24

T6-5: 3, 5, 9, 13, 14 T6-6: 1, 4, 7, 10, 11

The rest of the questions are for your review at home.

Notes/Questions

Ch 6 REVIEW

5

T 6-4: I can simplify radical expressions by multiplying and dividing. Simplify each expression and box your answer.

1.
$$\sqrt[5]{\frac{-1024}{243}}$$

2.
$$\sqrt[5]{243x^{10}}$$

$$3.\sqrt{14a^2}$$

$$4.\sqrt{-(14a)^2}$$

5.
$$\sqrt{49m^2t^8}$$

5.
$$\sqrt{49m^2t^8}$$
 6. $\sqrt{\frac{16m^2}{25}}$

7.
$$\sqrt[3]{-64r^2w^{15}}$$

8.
$$\sqrt{(2x)^8}$$

$$9.-\sqrt[4]{625s^8}$$

$$9. - \sqrt[4]{625s^8} \qquad 10. \sqrt[3]{216p^3q^9}$$

11.
$$\sqrt{x^2 + 10x + 25}$$

12.
$$\sqrt[3]{27x^9y^{12}}$$

13.
$$\frac{3}{7-\sqrt{2}}$$

14.
$$\frac{4}{3+\sqrt{3}}$$

15.
$$\frac{\sqrt{5}}{8-\sqrt{6}}$$

16.
$$y^{-\frac{1}{2}}$$

17.
$$\sqrt{12} \cdot \sqrt[5]{12^3}$$
 18. $g^{\frac{4}{7}} \cdot g^{\frac{3}{7}}$ 19. $s^{\frac{3}{4}} \cdot s^{\frac{13}{4}}$ 20. $\left(u^{\frac{1}{3}}\right)^{\frac{4}{5}}$

18.
$$g^{\frac{4}{7}} \cdot g^{\frac{3}{7}}$$

19.
$$s^{\frac{3}{4}} \cdot s^{\frac{13}{4}}$$

20.
$$\left(u^{\frac{1}{3}}\right)^{\frac{4}{5}}$$

21.
$$b^{\frac{3}{5}}$$

$$22. \sqrt{\frac{1}{32}c^4d^7}$$

23.
$$\sqrt{\frac{9a^5}{64b^4}}$$

24.
$$\sqrt[4]{\frac{16}{125a^3}}$$

- **25. BRAKING** The formula $s = 2\sqrt{5\ell}$ estimates the speed s in miles per hour of a car when it leaves skid marks ℓ feet long. Use the formula to write a simplified expression for s if $\ell = 85$. Then evaluate s to the nearest mile per hour.
- 26. PYTHAGOREAN THEOREM The measures of the legs of a right triangle can be represented by the expressions $6x^2y$ and $9x^2y$. Use the Pythagorean Theorem to find a simplified expression for the measure of the hypotenuse.

$\underline{T \ 6\text{-}5:}$ I can simplify radical expressions by adding, subtracting and multiplying.

1. $2\sqrt{48} - \sqrt{75} - \sqrt{12}$

-5

2. $(2 + \sqrt{3}) (6 - \sqrt{2})$

3. $(1-\sqrt{5})(1+\sqrt{5})$

4. $(3-\sqrt{7})(5+\sqrt{2})$

 $5.(\sqrt{2}-\sqrt{6})^2$

6. $(4\sqrt{12})(3\sqrt{20})$

7. $\sqrt{2} + \sqrt{8} + \sqrt{50}$

 $8.\ \sqrt{12} - 2\sqrt{3} + \sqrt{108}$

9. $8\sqrt{5} - \sqrt{45} - \sqrt{80}$

10. $\sqrt{2} (\sqrt{1} - \sqrt{10})$

11. $\sqrt{810} + \sqrt{240} - \sqrt{250}$

12. $6\sqrt{20} + 8\sqrt{5} - 5\sqrt{45}$

13. $8\sqrt{48} - 6\sqrt{75} + 7\sqrt{80}$

14. $\sqrt[4]{3}$ ($\sqrt[4]{27}$ – $\sqrt[4]{16}$)

15. $5\sqrt[3]{32} + 2\sqrt[3]{108} + \sqrt[3]{192}$

 $16. \sqrt[4]{48} + \sqrt[4]{162} + \sqrt[4]{256}$

$\underline{T \text{ 6-6:}}$ I can solve equations containing radicals.

- 5

Solve the following equations. **VERIFY all solutions**. Solutions that don't work with a box around them are considered incorrect! Box your answer!

1.
$$2\sqrt{4x+8}-4=8$$

2.
$$\sqrt{3x+1} = \sqrt{5x} - 1$$

3.
$$3 + 2x\sqrt{3} = 5$$

4.
$$(9x-11)^{\frac{1}{2}}=x+1$$

5.
$$\sqrt{5-x}-4=6$$

$$6. \qquad \sqrt{2x+1} + \sqrt{x} = 5$$

7.
$$(3x+1)^{\frac{1}{3}}+5=0$$

8.
$$\sqrt[4]{2x+1} - 3 = 0$$

9.
$$5 + \sqrt{9x} = 4$$

10.
$$3 + 5x^{\frac{1}{2}} = 0$$

11.
$$2\sqrt{2x-7} = \sqrt{2x+2}$$

12.
$$\sqrt{2x^2 + 5x} = -x - 10$$