\qquad Per: \qquad
Target 6-1: I can solve systems of equations by graphing and determine the number of solutions. I can use this to solve real world situations.
Solve by graphing. Remember to state your solution; the graph itself is not your answer.

1. $y=\frac{1}{2} x-3$
$y=2-\frac{3}{4} x$
Type of solution: \qquad
Solution(x, y): \qquad

2. $y=\frac{3}{4} x+2$
$4 y-3 x=-12$
Type of solution: \qquad
Solution(x, y): \qquad

3. $-x+y=-3$ $4 x+3 y=12$

Type of solution: \qquad
Solution(x, y): \qquad

4. $-4 y=2 x-20$
$2 y-10=-x$
Type of solution: \qquad
Solution(x, y): \qquad

\qquad Per: \qquad
Target 6-2: I can solve systems of equations by using substitution and use this to solve real world situations.

Solve with substitution and state your solution as an ordered pair if possible.

1. $-x+y=-1$ $x=y-1$
2. $y=-1-x$
$y=-13-5 x$
3. $-7 x-2 y=-13$
$x-2 y=11$

Verification:

Type of solution:

Solution (x, y): \qquad

Type of solution: \qquad
Type of solution: ___

Solution (x, y): \qquad
\qquad Per:

Target 6-3: I can solve systems of equations by using elimination and use this to solve real world situations.
Solve by elimination, state your solution as an ordered pair if possible.

$$
\text { 1. } \begin{aligned}
& -7 x+y=19 \\
& -2 x+3 y=-19
\end{aligned}
$$

Verification:
Ver

Type of solution: \qquad

Solution (x, y): \qquad -1
2. $2 x-y=19$
$-2 x+y=-19$

$$
\text { 3. } \begin{aligned}
& -4 x-2 y=14 \\
& -10 x+7 y=-25
\end{aligned}
$$

Verification:

Type of solution: \qquad

Solution (x, y): \qquad
Verification:

Type of solution: \qquad

Solution (x, y): \qquad
\qquad Per: \qquad

T6-4 Applications

1. The admission fee at a small fair is $\$ 1.50$ for children and $\$ 4.00$ for adults. On a certain day, 2200 people enter the fair and $\$ 5050$ is collected. How many children and how many adults attended?

2. U-Haul rents trucks for $\$ 19.99$ and charges $\$ 2.77$ per mile. Penske rents trucks for $\$ 49.99$ and charges $\$ 0.27$ per mile. How far will both trucking companies travel before they have the same total cost? Write a system of equations to represent both moving truck companies and define your variables.

