\qquad

Completing the Square (4.5)

Day 1 Practice. If necessary use fractions and not decimals. $\quad c=\left(\frac{b}{2}\right)^{2}$
Complete the square and write it in factored form (as a squared binomial)

1. $x^{2}-22 x+$ \qquad $=(\quad)^{2}$
2. $x^{2}-\frac{1}{2} x+$ \qquad
3. $x^{2}+12 x+{ }_{C}=(\quad)^{2}$
4. $x^{2}-\frac{5}{7} x+$ \qquad $=$
5. $x^{2}+x+$ \qquad $=($ $)^{2}$
6. $x^{2}-13 x+$ \qquad
7. $x^{2}+10 x+$ \qquad $=$
8. $x^{2}-3 x+\ldots=$
9. $x^{2}-6 x+$ \qquad $=$
10. $x^{2}+3 x+$ \qquad $=$
11. $x^{2}-7 x+$ \qquad $=$
12. $x^{2}-34 x+\ldots=$

Solve each equation by taking the square root of both sides. Don't forget when you take the square root you need to note the two answers with \pm.
13. $(x+7)^{2}=64$
14. $(x-2)^{2}=15$
15. $(x+12)^{2}=16$
16. $(x-8)^{2}=12$

Day 2 Notes: Solve by Completing the Square.

- Get all the variable terms on

1. $x^{2}+6 x=0$ one side, constants on the other

- Divide all terms by a to make $a=+1$
- Make a perfect square. Divide b by 2 then square
- Add the result to both sides
- Factor (the perfect square)
- Square root both sides
- Simplify and solve
- Get all the variables on one

2. $x^{2}+4 x=6$ side, constants on the other

- Divide all terms by a to make $a=+1$
- Make a perfect square. Divide b by 2 then square
- Add the result to both sides
- Factor (the perfect square)
- Square root both sides
- Simplify and solve

Day 2 Notes: Solve by Completing the Square.

- Get all the variables on one side, constants on the other
- Divide all terms by a to make $a=+1$
- Make a perfect square. Divide b by 2 then square
- Add the result to both sides
- Factor (the perfect square)
- Square root both sides
- Simplify and solve
- Get all the variables on one

4. $2 x^{2}+7 x-4=0$ side, constants on the other

- Divide all terms by a to make $a=+1$
- Make a perfect square. Divide b by 2 then square
- Add the result to both sides
- Factor (the perfect square)
- Square root both sides
- Simplify and solve

1. $x^{2}+4 x=0$	7. $x^{2}+8 x+16=1$

2. $2 x^{2}-12 x=0$
3. $x^{2}+18=9 x$
4. $x^{2}-6 x=23$
5. $x^{2}-14 x+19=0$
6. $x^{2}-8 x+16=8$
7. $x^{2}+4 x+11=0$
8. $2 x+4=x^{2}$

Investments: The amount of money A in an account in which P dollars are invested for 2 years is given by the formula $A=P(1+r)^{2}$ where r is the interest rate compounded annually. If the original investment is $\$ 800$ and the amount A in the account after two years is $\$ 882$, at what interest rate was it invested?

Hint: Substitute in your values for A and P , then use the square root method to find r. Since r is an interest rate you only care about the positive results and will need to convert your answer into a percent.

